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Abstract

Traditional off-line global optimization is non-resilient and non-opportunistic. That is, traditional
global optimization is unresponsive to small perturbations of the objective function that require a
small or large change in the optimizer. On-line optimization methods that are more resilient and
opportunistic than their off-line counterparts typicallyconsist of the computationally expensive
sequential repetition of off-line techniques. A novel approach to on-line global optimization is to
utilize the theory of evolutionary generation systems to develop a technique that is resilient, oppor-
tunistic, and inexpensive. The theory of evolutionary generation systems utilizes the probabilistic
sequential selection of a candidate optimizer from two possible candidates, basing the selection
on the ratio of the fitness values of the candidates and a parameter called the level of selectivity.
Using time-homogeneous, irreducible, ergodic Markov chains to model a sequence of local, and
hence inexpensive, decisions, this paper proves that such decisions result in the resilient and op-
portunistic determination of a candidate optimizer for a given objective function. In the limit as the
level of selectivity tends to infinity, the theory guarantees that the candidate optimizer is a global
optimizer. The optimization of flapping wing gaits illustrates the theory.
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Chapter 1

Introduction

This paper is devoted to the problem ofon-line optimization[1–7], which seeks an optimizer

x∗ ∈ D for a real-valued objective function

F : D → R : x → F (x), (1.1)

under the assumption that, during implementation, the userhas many motives and opportunities

to re-compute a candidate optimizer. This problem is similar to its more traditional off-line coun-

terpart [8–12] in that they both seek an optimizer. However,in off-line optimization[13], the

candidate optimizer is computed once, and its computation is not revisited during implementation.

For this reason, off-line optimization is non-responsive to perturbations of the objective function

in two ways: non-resiliency and non-opportunism, which areillustrated in Figs. 1.1 (a) and (b).

Specifically, small changes in the objective function may require small changes in the optimizer

(which happens when the optimizer depends continuously on the perturbation), or large changes

in the optimizer (which happens when the optimizer depends discontinuously on the perturbation),

respectively. Hence, the motivation for on-line optimization is that in practice, the objective func-

tion on which the candidate optimizer is implemented may be different from that for which the

candidate was designed.

The sequential repetition of off-line techniques results in on-line optimization methods that
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(b) Non-opportunism

Figure 1.1: Off-line optimization strategies yield results that are non-resilient and non-
opportunistic.

are more resilient and opportunistic than their off-line counterparts. However, such sequential

repetitions can be computationally expensive, a fact that may be shown by either an amortized

analysis [14] or a competitive analysis [1,2]. Therefore, the goal of this paper is to find an on-line

global optimization strategy that is resilient, opportunistic, and inexpensive.

More specifically, this paper shows thatrational behavior[15] is a sufficient condition for

resiliency and opportunism. The work then proposes a resilient and opportunistic, on-line, global

optimization scheme based on the novel concept of selectivegeneration, which utilizes the ratio of

the fitness values of two candidate optimizers and a parameter called the level of selectivity. In the

limit as the level of selectivity tends to infinity, the scheme guarantees that the selected candidate

optimizer is a global optimizer. Although rational behavior suggests optimization decisions that are

based on global knowledge, this paper proves that rationality may be achieved through a sequence

of decisions using only local knowledge of the objective function. Thus, the proposed scheme is

also computationally inexpensive at each step.

The original contributions of this work include the following.

• A novel mathematical definition of selection, theSelect function, for use in probabilistic

optimization.

• A demonstration that the canonical genetic algorithm with fitness proportional selection and

the (1+1) evolutionary strategy are particular cases of a scheme utilizing theSelect function.

• A proof that selective generation is a sufficient condition for rational behavior.

• A proof that rational behavior is a sufficient condition for resiliency and opportunism.
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• An analysis of the effect that the level of selectivity has onresiliency and opportunism.

• The identification of system-theoretic properties of a selective generation scheme, including

equilibria and their stability and optimality properties.

• The evolution of flapping wing parameters for the purpose of trajectory-tracking by a flap-

ping wing vehicle.

The remainder of the paper is as follows. Chapter 2 presents the fundamentals of a theory of

evolutionary generation systems that utilizes a novel scheme for fitness-based selection. Chapter

3 documents how evolutionary generation systems are different from other evolutionary compu-

tation strategies in the literature. Chapter 4 proves that a sufficient condition for resiliency and

opportunism is rational behavior. Chapter 5 furthers the theoretical results by demonstrating that

resiliency and opportunism may be achieved inexpensively at each step. Chapter 6 illustrates the

theory by means of an analytically treated example. Chapter 7applies the theory to the optimiza-

tion of flapping wing gaits. Chapter 8 presents conclusions.
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Chapter 2

Theory of Evolutionary Generation Systems

The theory in this chapter is based on concepts from Generation Systems Theory (GST) [16]. GST

formalizes the self-reproduction ofcells, a term describing any entity that is capable of producing

an offspring regardless of its physical nature. A robot, a bacterium, or even a piece of software

code is considered to be a cell in this theory if they can each produce another robot, bacterium or

some lines of code respectively. These cells utilize resources to self-reproduce. A selected resource

is manipulated by the parent cell via an embedded generationaction to produce an outcome.

We now extend these ideas to develop a theory of evolutionarygeneration systems. For opti-

mization, a cell is any element of the domain of the objectivefunction (1.1) and a resource is any

input that facilitates a transition between cells. Furthermore, it is possible that resources are chosen

probabilistically. Consistent with these notions, we make the following definition.

Definition 1. An evolutionary generation systemis a quadrupleE = (X,R, P,G), where

• X is aset ofn cells, X = {x1, x2, . . . , xn};

• R is aset ofm resources, R = {r1, r2, . . . , rm}, that can be utilized for cell reproduction;

• P : R → (0, 1] is a probability mass function onR, given byP (ri) = Pr[R = ri] = pi,
m
∑

k=1
pk = 1; and
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• G : X × R → X is a generation functionthat maps a parent cell and a resource into a

descendant cell outcome.

Use of the adjectiveevolutionaryhere is consistent with biology [17], where evolution is de-

fined as the genetic changes in a biological population that occur every generation due to genetic

changes from parent to descendant.

Example 1. A random walk overZν is an example of an evolutionary generation system. Take

X = Z
ν , R = {±ei, 1 ≤ i ≤ ν} (whereei are the standard basis vectors forZ

ν), let P be the

uniform probability distribution overR, and defineG : X × R → X : (x, r) 7→ y = x + r. The

sequence of cells over the generations of this evolutionarygeneration system becomes a random

walk.

Let (rµ) = (r1, r2, . . . , rµ) be a sequence ofµ resources fromR. We define the notation

G (x, (rµ)) := G(. . . G(G(x, r1), r2) . . . , rµ) (2.1)

to denote the cell produced byx using sequence(rµ). This is illustrated in Fig. 2.1 as a directed

graph.

x

r1 r2 rµ

G (x, (rµ))G (x, r1) G (x, (r2)) . . .

Figure 2.1: The directed graph ofG (x, (rµ)).

Definition 2. The set of cells,X, of the evolutionary generation systemE = (X,R, P,G) is

reachablethroughG andR if, for all pairsx1, x2 ∈ X, there existsk ∈ N and a sequence(rk) ∈ R

such thatx2 = G (x1, (rk)).

Note that reachability of the cells of an evolutionary generation system is identical to that of

reachability of the vertices of a directed graph in Graph Theory [18].

In Definition 1, the restriction that the offspring of a cell be itself a cell implies that the set of

cells isclosed[19], since there is no feasible transition to any element outsideX. If the set of cells
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is also reachable, thenX is said to beirreducible [19]. The previous example of a random walk

overZν is an example of an irreducible evolutionary generation system.

We associate each cell with a non-zero, positive performance index that is a measure of the

fitness of the cell,F : X → R
+. The notion of fitness facilitates the following novel mathematical

definition of selection.

Definition 3. Given a cell set,X, and a fitness functionF : X → R
+, letSelect : X×X×N → X

be a random function such that ifx1, x2 ∈ X are any two cells, andN ∈ N is thelevel of selectivity,

then

Select(x1, x2, N) =































x1 with probability 1

1+

(

F (x2)

F (x1)

)N ,

x2 with probability 1

1+

(

F (x1)

F (x2)

)N .

(2.2)

We can now define a selective evolutionary generation system(SEGS).

Definition 4. A selective evolutionary generation systemis a quintupleΓ = (X,R, P,G, F ),

where

• (X,R, P,G) is an evolutionary generation system;

• F : X → R
+ is a function that evaluates cell fitness;

• the set of cells,X, is reachable throughG andR; and

• the dynamics of the system are given by

X (t + 1) = Select(X (t), G(X (t),R(t)), N). (2.3)

In (2.3),X (t) denotes the realization of a random cell variable at timet, R(t) denotes the real-

ization of a random resource variable at timet, G(X (t),R(t)) denotes the offspring of the realized

random cell utilizing the realized random resource at timet, andX (0) has a known probability

mass function.
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Also in (2.3), the probability of a cell realization at some future time given the present cell

realization is conditionally independent of the past time history of cell realizations. Thus, the

dynamics of a SEGS form a discrete-time homogeneous Markov chain [20]. This property is

useful for the SEGS analysis conducted in Chapter 5.

The two central tenets of Darwin’s theory of evolution [17] are embodied in Definition 4.

1) Undirected variationvia the generation function. Permissible undirected variations include

• mutationsof all or part of a cell,

• recombinationof the constituent elements of a cell with the constituent elements of an-

other (resource) cell,

• inheritanceof all or part of a cell when the generation function maps all or part of a cell

to itself, and

• drift of the constituent elements of a cell, as certain elements drift or become fixed due to

the nature of the probability mass function over the resource set.

That is, we impose no restrictions on the nature of the undirected variation process, thereby

capturing all biological and computational mechanisms forcreating diverse offspring. As we

shall see, evenflow, the sudden addition or removal of cells, is captured by our theory, since

this process may be modeled by unexpected perturbations of the fitness function.

2) Natural selectionvia theSelect function.

TheSelect function has a number of interesting properties, including:

• For allN ,
Pr[Select(x1, x2, N) = x1]

Pr[Select(x1, x2, N) = x2]
=

(

F (x1)

F (x2)

)N

. (2.4)

That is, the ratio of the probabilities of selecting any two cells is equal to the ratio of their

respective fitnesses raised to the powerN .
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• ForN = 0, the values ofF (x1) andF (x2) are irrelevant. That is,

Pr[Select(x1, x2, 0) = x1] = 1/2, and (2.5)

Pr[Select(x1, x2, 0) = x2] = 1/2. (2.6)

• WhenN = ∞, if F (x1) > F (x2) then

Pr[Select(x1, x2,∞) = x1] = 1. (2.7)

On the other hand, ifF (x1) < F (x2) then

Pr[Select(x1, x2,∞) = x2] = 1. (2.8)

• If F (x1) = F (x2) then, for allN ,

Pr[Select(x1, x2, N) = x1] = 1/2, and (2.9)

Pr[Select(x1, x2, N) = x2] = 1/2. (2.10)

The level of selectivity,N , has a biological interpretation as well. Suppose that the fitness of

a cell is measured by the total number of descendants produced overk generations,k ≥ 1. This

prolificity is typically calledfuture reproductive valueor fecundity[17]. When a colony is initiated

by two self-reproducing progenitorsx1 andx2, the ratio of the descendant population fractions

afterk generations equals the ratio of the respective future reproductive values,

(

F (x1)

F (x2)

)

. (2.11)

After k generations, the ratio of the probability of choosing, by random sampling, a descendant

of x1 to the probability of choosing a descendant ofx2 is equal to the ratio of the descendant
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population fractions, (2.11). Correspondingly, the ratio of the probability of selectingx1 at the

initial time to the probability of selectingx2 at the initial time, (2.4), is identical to the ratio of the

respective prolificities, (2.11), withN = 1.

Now consider the following sequence of operations.

1. Initiate a colony with two self-reproducing progenitorsx1 andx2, and let descendants be

produced fork generations.

2. Extract a sample from the resulting population. Use the sample to initiate a second colony,

and let descendants be produced fork generations.

3. Iterate the sample and colony initiation procedure untilanN th colony is produced.

Then, the ratio of the probability of selecting a descendantof x1 to the probability of selecting a

descendant ofx2 using this multi-step process becomes

(

F (x1)

F (x2)

)(

F (x1)

F (x2)

)

. . .

(

F (x1)

F (x2)

)

=

(

F (x1)

F (x2)

)N

, (2.12)

and it is now clear thatN represents the number of selections that are made, assuminga k-

generation fecundity interpretation of fitness.

A recent, well-publicized, biological experiment that fitsthis multi-selection model is [21].

Two polyethylene degrading strains of bacteria were isolated in this study as a result of the repeated

selections of the progeny of soil bacteria that were forced to feed on a polyethylene enriched

medium.
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Chapter 3

Comparative Literature Study

A SEGS as described by Definition 4 can be utilized as an evolutionary optimization algorithm

(Chapter 5) to take advantage of its guaranteed properties. There are works in the optimization lit-

erature that appear to be similar: reinforcement learning [22], simulated annealing [23,24], genetic

algorithms [25–27], and evolutionary strategies [28–31].Comparisons between these optimization

methodologies and a SEGS approach can be made, and this chapter is devoted to providing such

comparisons to outline the distinctions between approaches. For each of the optimization method-

ologies, we quantify the ratio of the probability of selecting a candidate optimizer of (1.1) to the

probability of selecting the optimizer’s offspring. By comparing this resultant ratio to (2.4), we

demonstrate the originality of our theory of evolutionary generation systems.

3.1 Reinforcement Learning

In reinforcement learning (RL) [22], a decision-making agent takes actions in an environment and

receives a corresponding reward. The traditional RL problemis to determine the best policy or

sequence of actions that maximizes the total reward. There are two major differences between

our work and RL. First, evolutionary generation systems theory does not allow changes in the

tactics of individual cells, since there are fixed, probabilistic rules for generation outcomes in

place. That is, the generation action taken by a particular cell is always the same but the outcome
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varies probabilistically due to selection. Second, RL seeksthe long-term maximization of reward

of a policy of cell-action pairs, while a SEGS focuses on probabilistically increasing the short-term

reward from one cell-action pair. The different goals have consequences for responsiveness: an RL

approach may not adapt the optimal policy if individual cell-action pair rewards are perturbed.

To facilitate a comparison between RL and a SEGS, consider thefollowing deterministic rein-

forcement learning problem. Letx1 andx2 be the labels of two terminal cells, and let the current

cell, also labeledx1, be capable of a one-step transition to either of the two terminal cells. Hence,

there are two possible policies: 1) a transition fromx1 to x1, and 2) a transition fromx1 to x2. Let

the reward of cellxi beF (xi). Using value iteration, the cost-to-go of the current cell with policy

1) is

V1 = F (x1) + F (x1) = 2F (x1), (3.1)

and the cost-to-go of the current cell with policy 2) is

V2 = F (x1) + F (x2). (3.2)

Since RL chooses the policy with maximum reward, the ratio of the probability of selecting the

terminal cellx1 to the probability of selecting the terminal cellx2 is

Pr[x1 is selected]
Pr[x2 is selected]

=

ind (2F (x1) > F (x1) + F (x2))

ind (F (x1) + F (x2) > 2F (x1))
, (3.3)

whereind denotes the indicator function, satisfying

ind(True) = 1, (3.4)

ind(False) = 0. (3.5)

This ratio is different from (2.4).
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3.2 Simulated Annealing

The simulated annealing algorithm [24] randomly samples the search space atxi, evaluatesF (xi),

and accepts new candidate optimizersxi according to the Metropolis criterion. This criterion spec-

ifies that cells with better fitness are always accepted, while less fit cells are accepted with a prob-

ability that depends on the relative fitness with respect to the current cellx1, and a “temperature”

parameterT . The equation for the probability of selecting the less fit cell, x2, is

Pr[x2 is selected] = pSA = exp

(

F (x2) − F (x1)

T

)

, (3.6)

wheneverF (x1) > F (x2). Therefore, decreasing the temperature or increasing the relative fitness

decreases the acceptance probability of less fit states.

The ratio of the probability of selecting the current candidate optimizerx1 to the probability of

selecting another candidate optimizerx2 is

Pr[x1 is selected]
Pr[x2 is selected]

=

1 − (ind (F (x2) > F (x1)) + ind (F (x1) > F (x2)) pSA)

ind (F (x2) > F (x1)) + ind (F (x1) > F (x2)) pSA

. (3.7)

This ratio is different from (2.4).

3.3 Genetic Algorithms

The canonical genetic algorithm [25] models each cell of thesearch space,xi, as a binary string of

lengthl to which a fitness valueF (xi) is associated. The algorithm outline [32] follows:

1: choose an initial population

2: determine the fitness of each individual

3: perform selection

4: repeat
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5: perform crossover

6: perform mutation

7: determine the fitness of each individual

8: perform selection

9: until some stopping criterion applies

We are interested in the probability that a cell,x1, of the population at Line 4 is chosen to

be a member of the population for the next generation (i.e., after one iteration of the repeat loop)

without experiencing crossover or mutation. We then compare this probability to the probability

that an offspring ofx1 is a member of the population at the next generation. Let the probability

of crossover ofx1 with another binary string bepc ∈ (0, 1), and let mutation of thej-th bit of x1

occur independently with probabilitypm ∈ (0, 1).

Of the many kinds of selection processes (e.g., fitness-proportional selection, tournament selec-

tion, or truncation selection) that can be applied to the cells of a population,Y , let us first consider

fitness-proportional selection. The probability of consideringx1 with this selection process is

Pr[x1 is considered] =
F (x1)
∑

y∈Y
F (y)

. (3.8)

Hence, the probability that an unchanged candidate optimizer, x1, is a member of the population

for the next generation is

Pr[x1 is selected] = (1 − pc)(1 − pm)l F (x1)
∑

y∈Y
F (y)

. (3.9)

If x2 is an offspring ofx1 that undergoes crossover with probabilitypc, undergoes mutation ofk

bits with probabilitypm, and is subjected to fitness-proportional selection, it becomes a member of

the population for the next generation with probability

Pr[x2 is selected] = pcp
k
m(1 − pm)l−k F (x2)

∑

y∈Y
F (y)

. (3.10)
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Thus, the ratio of the probability of selectingx1 to the probability of selectingx2 becomes

Pr[x1 is selected]
Pr[x2 is selected]

=

(1 − pc)

pc

(1 − pm)k

pk
m

F (x1)

F (x2)
= K

F (x1)

F (x2)
, K > 0. (3.11)

Although the equation above is similar to (2.4), it demonstrates that in the canonical genetic algo-

rithm using fitness-proportional selection, the ratio of selection probabilities is proportional to the

fitness ratio. In (3.11), ifK = 1 we obtain a particular case of (2.4) whereN = 1.

With tournament selection, the probability of consideringx1 is

Pr[x1 is considered] =















































































ps ∈ (0, 1), if, ∀y ∈ Y, F (x1) > F (y),

ps(1 − ps), if |{y ∈ Y | F (y) > F (x1)}| = 1,

ps(1 − ps)
2, if |{y ∈ Y | F (y) > F (x1)}| = 2,

. . . . . .

ps(1 − ps)
|Y |−1, if |{y ∈ Y | F (y) > F (x1)}| = |Y | − 1.

(3.12)

Usingrank(x1) to denote|{y ∈ Y | F (y) > F (x1)}|, the probability that an unchanged candidate

optimizer,x1, is a member of the population for the next generation is

Pr[x1 is selected] = (1 − pc)(1 − pm)lps(1 − ps)
rank(x1). (3.13)

If x2 is an offspring ofx1 that undergoes crossover with probabilitypc, undergoes mutation ofk

bits with probabilitypm, and is subjected to tournament selection, it becomes a member of the

population for the next generation with probability

Pr[x2 is selected] = pcp
k
m(1 − pm)l−kps(1 − ps)

rank(x2). (3.14)
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Thus, the ratio of the probability of selectingx1 to the probability of selectingx2 becomes

Pr[x1 is selected]
Pr[x2 is selected]

=
(1 − pc)

pc

(1 − pm)k

pk
m

(1 − ps)
rank(x1)

(1 − ps)rank(x2)
=

K(1 − ps)
rank(x1)−rank(x2), K > 0. (3.15)

This result is different from (2.4).

With truncation selection, the probability of consideringx1 is

Pr[x1 is considered] = ind

(

rank (x1) <
|Y |

2

)

. (3.16)

Hence, the probability that an unchanged candidate optimizer, x1, is a member of the population

for the next generation is

Pr[x1 is selected] =

(1 − pc)(1 − pm)l ind

(

rank (x1) <
|Y |

2

)

. (3.17)

If x2 is an offspring ofx1 that undergoes crossover with probabilitypc, undergoes mutation of

k bits with probabilitypm, and is subjected to truncation selection, it becomes a member of the

population for the next generation with probability

Pr[x2 is selected] =

pcp
k
m(1 − pm)l−k ind

(

rank (x2) <
|Y |

2

)

. (3.18)

Thus, the ratio of the probability of selectingx1 to the probability of selectingx2 becomes

Pr[x1 is selected]
Pr[x2 is selected]

=
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(1 − pc)

pc

(1 − pm)k

pk
m

ind
(

rank (x1) < |Y |
2

)

ind
(

rank (x2) < |Y |
2

) , (3.19)

= K
ind

(

rank (x1) < |Y |
2

)

ind
(

rank (x2) < |Y |
2

) , K > 0. (3.20)

This ratio is different from (2.4).

3.4 Evolutionary Strategies

Like genetic algorithms, the general evolutionary strategy [30] operates on a population of cells of

the search space of (1.1). Typically, a parent population ofsizeµ creates an offspring population

of size λ using crossover and mutation processes, withρ parent cells required to produce one

offspring. Crossover does not occur ifρ = 1. Selection of the population for the next generation

of the algorithm occurs by picking theµ best cells from theλ offspring (known as the(µ/ρ, λ)-ES

strategy), or by picking theµ best cells from the total population ofµ + λ cells (known as the

(µ/ρ + λ)-ES strategy).

The(1 + 1)-ES strategy [33] is most similar to evolutionary generation systems theory. Here,

one candidate optimizer,x1, produces one mutated offspring candidate optimizer,x2, and the ratio

of the probability of selectingx1 to the probability of selectingx2 is simply

Pr[x1 is selected]
Pr[x2 is selected]

=
ind (F (x1) > F (x2))

ind (F (x2) > F (x1))
. (3.21)

This ratio equals (2.4) when the parameterN in (2.4) is∞.
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Chapter 4

Markov Chains That Behave Rationally

In this chapter, we develop a Theory of Rational Behavior [15] for time-homogeneous, irreducible,

ergodic Markov chains. We then discuss the entropy, resiliency and opportunism of Markov chains

that satisfy the axioms of this theory.

4.1 Markov Chain Rational Behavior

Let (X,P) be a time-homogeneous, irreducible, ergodic Markov chain,whereX = {x1, x2, . . . ,

xn} is the set of states of a Markov process,P ∈ R
n×n is the matrix of transition probabilities for

these states, andn < ∞ is the number of states. Assume that the initial probabilitydistribution over

the states is known, i.e., we are given ann-vectorp(0) having elementspi(0) = Pr[X (0) = xi] for

all xi ∈ X, whereX (0) denotes the state realization at time0, and we have
n
∑

i=1
pi(0) = 1. Since

we have assumed that the states inX are ergodic and irreducible, they admit a unique stationary

probability distribution [19,20]. Letπ =
[

π1 π2 . . . πn

]

be the row vector of these stationary

probabilities, satisfying the constraintsπi > 0 ∀i, and
n
∑

i=1
πi = 1. Let F : X → R

+ be a positive

fitness function. LetN ∈ N be a natural number. We define rational behavior for this Markov

chain as follows.

Definition 5. The time-homogeneous, irreducible, ergodic Markov chain(X,P) is said tobehave
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rationally with respect to fitnessF with levelN if

πi

πj

=

(

F (xi)

F (xj)

)N

, 1 ≤ i, j ≤ n. (4.1)

This definition is consistent with [15] because time averages and ensemble averages are equal

in an ergodic process. The requirement thatπi > 0 ∀i with
n
∑

i=1
πi = 1 corresponds to the ergodic

postulate of [15], and the requirement thatN > 0 corresponds to the selective (i.e., retardation)

postulate. Note that we have recast the requisite scalar function of [15] as a reward, instead of a

penalty.

Each stationary probability can also be explicitly characterized to ensure Markov chain rational

behavior, as is indicated by the following theorem.

Theorem 1. The time-homogeneous, irreducible, ergodic Markov chain(X,P) behaves rationally

with respect to fitnessF with levelN if and only if

πi =
F (xi)

N

n
∑

k=1
F (xk)

N
, 1 ≤ i ≤ n. (4.2)

Proof. See Appendix.

Here, we have a more general, probabilistic version of the optimization in (1.1). A Markov

chain that behaves rationally will select the state of maximum fitness with the highest stationary

probability, and, in the limit asN approaches∞, this probability is 1. The problem and solution

then revert to one of standard optimization.

Remarkably, rational behavior in Markov chains is the resultof a subsidiary optimization.

Theorem 2. The stationary distributionπ of the time-homogeneous, irreducible, ergodic Markov

chain(X,P) that behaves rationally with respect to fitnessF with levelN solves the optimization

problem

min
π1,...,πn

Φ(π) = −
n
∑

i=1

F (xi)
N ln(πi), (4.3)
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subject to the constraints
n
∑

i=1

πi = 1, (4.4)

πi > 0, ∀i. (4.5)

Proof. See Appendix.

Note that in (4.1), rational behavior is invariant under positive scaling of fitness. Hence, there

is no loss of generality in assuming that the fitness functionis normalized. Accordingly, letϕ =
[

ϕ1 ϕ2 . . . ϕn

]

be the distribution of theN th power of fitness, where

ϕi =
F (xi)

N

n
∑

k=1
F (xk)

N
, 1 ≤ i ≤ n. (4.6)

Definition 6. A vectorv ∈ R
n is apositive mass function of ordern if it satisfiesvi > 0 ∀i, and

n
∑

k=1
vk = 1. Let Dn be the set of positive mass functions of ordern.

The vectorϕ ∈ R
n is a positive mass function. Let

U(π) =
Φ(π)

n
∑

k=1
F (xk)

N
. (4.7)

Then, the optimization problem (4.3) can be normalized as

min
π1,...,πn

U(π) = −
n
∑

i=1

ϕi ln(πi), (4.8)

subject to the constraints (4.4) and (4.5). Furthermore, Theorem 2 states that at the optimum, the

stationary distribution agrees with the fitness distribution, i.e.,π = ϕ.
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4.2 Entropy of Markov Chains That Behave Rationally

Definition 7. Entropy[34] is the function

H : Dn → R : ϕ 7→ H(ϕ) = −
n
∑

i=1

ϕi ln(ϕi). (4.9)

Using the notion of entropy, we can interpret (4.8) as follows. First, we recognize the term

− ln(πi) as the information content of statexi [34]. Hence, the right hand side of (4.8) represents

the “fitness-expectation of information.” Moreover, we have the following:

Corollary 1. The time-homogeneous, irreducible, ergodic Markov chain(X,P) behaves ratio-

nally with respect to fitnessF with levelN if and only if its stationary probability distribution

minimizes the fitness-expectation of information. At the optimum, this fitness-expectation of infor-

mation is the entropy of the fitness distribution, i.e.,

U∗ = H(ϕ) = −
n
∑

i=1

ϕi ln(ϕi). (4.10)

A basic property of entropy that is alluded to in [35] and which will be utilized in the proof of

Theorem 12 follows.

Theorem 3. Letϕ ∈ Dn be arbitrary. Then,

min
π∈Dn

−
n
∑

i=1

ϕi ln(πi), (4.11)

has a minimum value ofH(ϕ) that is achieved atπ = ϕ.

Equivalently,∀ϕ ∈ Dn, ∀π ∈ Dn,

−
n
∑

i=1

ϕi ln(πi) ≥ −
n
∑

i=1

ϕi ln(ϕi), (4.12)

with the equality holding if and only ifπ = ϕ.

20



Equivalently,∀ϕ ∈ Dn, π ∈ Dn,

−
n
∑

i=1

ϕi ln

(

πi

ϕi

)

≥ 0, (4.13)

with the equality holding if and only ifπ = ϕ.

Proof. See Appendix.

For Markov chains that behave rationally, and therefore possess fitness fractions that are dis-

tributed over the set of states as in (4.6), the entropy quantifies how egalitarian or elitist the states

are. That is, the entropy is highest when all states have equal fitness; conversely, the entropy is

lowest when there is only one state with a fitness fraction of unity and all other fitness fractions are

zero. Equation (4.9) arises in other well-known fields, and similar interpretations for the distributed

quantities and the entropy exist [34–37].

4.3 Resiliency and Opportunism of Markov Chains That Be-

have Rationally

We can now formally define resiliency and opportunism, first described through Fig. 1.1, as the

sensitivity of the stationary distribution to changes in fitness.

Definition 8. For any time-homogeneous, irreducible, ergodic Markov chain (X,P) with a pos-

itive fitness function for all the states inX, theextrinsic resiliencyof statexi to changes in the

fitness of statexj, j 6= i, is defined as

ρij =
∂πi

∂F (xj)
, (4.14)

and theintrinsic resiliencyof statexi to changes in its own fitness is taken to be

ρii =
∂πi

∂F (xi)
. (4.15)
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Since the stationary distributionπ has the closed form expression (4.2) for the time-homo-

geneous, irreducible, ergodic Markov chain(X,P) that behaves rationally with respect to fitness

F with levelN , the extrinsic and intrinsic resiliencies are

ρij =
∂πi

∂F (xj)
=

−Nπiπj

F (xj)
, ∀j 6= i, (4.16)

ρii =
∂πi

∂F (xi)
=

Nπi (1 − πi)

F (xi)
. (4.17)

We say that the Markov chain(X,P) is resilient and opportunisticif ρij 6= 0 for all i andj.

The level of selectivity has the following asymptotic effect on resiliency and opportunism.

Theorem 4. For the time-homogeneous, irreducible, ergodic Markov chain (X,P) that behaves

rationally with respect to fitnessF with levelN ,

ρij

∣

∣

∣

∣N=0
j 6=i

= ρii

∣

∣

∣

∣

N=0
= 0, (4.18)

and

lim
N→∞

j 6=i

ρij = lim
N→∞

ρii = 0. (4.19)

Proof. See Appendix.

As a result of Theorem 4, we have quantification that standardoptimization (N = ∞) is non-

resilient. Moreover, recall that if we assume ak-generation fecundity interpretation of fitness as in

Chapter 2, thenN = ∞ also represents an infinite number of selections made overk generations.

There is much biological evidence to confirm that prolonged selective breeding yields non-resilient

strains [38–42].

Resiliency and opportunism is a direct outcome of Markov chain rational behavior, as stated

below.

Theorem 5. The time-homogeneous, irreducible, ergodic Markov chain(X,P) is resilient and

opportunistic if the chain behaves rationally.
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Proof. See Appendix.

Resiliency and opportunism do not always imply Markov chain rational behavior (see Chapter

6). But we can state the following instead.

Theorem 6. Ergodicity is a necessary condition for the time-homogeneous, irreducible Markov

chain(X,P) to be resilient and opportunistic.

Proof. See Appendix.

Furthermore, there is a fundamental trade-off between extrinsic and intrinsic resiliency that is

imposed by the constraint
n
∑

i=1
πi = 1. Taking the partial derivative of this constraint with respect to

the fitness of statexi, we obtain

∂πi

∂F (xi)
+

n
∑

j=1
j 6=i

∂πj

∂F (xi)
= 0. (4.20)

Note that, from (4.16) and (4.17), the extrinsic resiliencies are always negative, whereas the in-

trinsic resiliencies are positive. Hence, (4.20) implies that any change in fitness that improves a

state’s intrinsic resiliency is at the expense of the extrinsic resiliency of all other states. Similarly,

any change in fitness that improves a state’s extrinsic resiliency is at the expense of the intrinsic

resiliency of another state, and the extrinsic resiliency of all other states.
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Chapter 5

Selective Evolutionary Generation Systems

as Markov Chains That Behave Rationally

This chapter applies the Theory of Rational Behavior for time-homogeneous, irreducible, ergodic

Markov chains (as developed in Chapter 4) to a SEGS as formulated in Chapter 2. We begin with

some preliminaries.

5.1 Analysis of Selective Evolutionary Generation Systems

Definition 9. Let Γ = (X,R, P,G, F ) be a selective evolutionary generation system. Letxi, xj ∈

X be any two cells, andrk ∈ R be a resource. Thedescendancy tensor, δ, has elements

δijk =



















1 if xj = G(xi, rk), 1 ≤ i, j ≤ n, 1 ≤ k ≤ m,

0 otherwise.

(5.1)

Hence, the descendancy tensor indicates whether it is possible to produce cellxj in one step

from cell xi, using resourcerk. We can use this tensor to create a matrix that represents the

conditional probability of generatingxj given that the progenitor isxi, by utilizing the probability

of selecting each available resource and summing over allm resources as follows.
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Definition 10. For the SEGSΓ = (X,R, P,G, F ), thematrix of generation probabilities, γ, also

called the unselective matrix of transition probabilities, has elements

γij = Pr[offspring isxj | progenitor isxi], (5.2)

=
m
∑

k=1

δijkpk, 1 ≤ i, j ≤ n. (5.3)

This matrix is a stochastic matrix, as indicated by the following lemma.

Lemma 1. For the SEGSΓ = (X,R, P,G, F ) with matrix of generation probabilitiesγ,

n
∑

j=1

γij = 1, 1 ≤ i ≤ n. (5.4)

Proof. See Appendix.

Recall that a SEGS follows the stochastic Markov process described by (2.3). Therefore, we

can find a matrix of transition probabilities to describe thecell-to-cell transitions that occur as

a result of the selection dynamics. For the SEGSΓ = (X,R, P,G, F ), thematrix of transition

probabilities, P, has elements

Pij = Pr[X (t + 1) = xj | X (t) = xi], (5.5)

= Pr[Select(xi, xj, N) = xj | X (t) = xi]×

Pr[offspring isxj | progenitor isxi] (5.6)

=



































1

1+

(

F (xi)

F (xj)

)N γij, ∀j 6= i,

γii +
n
∑

j=1
j 6=i

1

1+

(

F (xj)

F (xi)

)N γij, if j = i.

(5.7)

Note that the matrix of transition probabilities in (5.7) isalso a stochastic matrix:
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Theorem 7. For the SEGSΓ = (X,R, P,G, F ) with matrix of transition probabilitiesP,

n
∑

j=1

Pij = 1, 1 ≤ i ≤ n. (5.8)

Proof. See Appendix.

In addition to irreducibility, if we assume that the selection dynamics of the SEGS is ergodic,

then a unique stationary probability distribution over theset of cells exists, and must satisfy the

following.

Theorem 8. For the ergodic SEGSΓ = (X,R, P,G, F ), let π =
[

π1 π2 . . . πn

]

be the row

vector of stationary probabilities, satisfying
n
∑

i=1
πi = 1. Assume that there is a unique index,I,

such thatF (xi) is maximized fori = I. Then,

lim
N→∞

πi = 0, 1 ≤ i ≤ n, i 6= I, (5.9)

lim
N→∞

πI = 1. (5.10)

Proof. See Appendix.

It is easy to extend this theorem and its proof to the case where I is not unique and show that

the cells with equal maximal fitness are equiprobable. For both versions of the theorem, there

exist stationary probabilities equal to zero in the limit asN approaches∞ because the stochastic

selection process becomes elitist instead of ergodic.

We can also examine the SEGS response to changes in selectivity and cell fitness. First, the

probability of increasing fitness with every time step, conditioned upon knowledge of the current

cell, is

Pr [F (X (t + 1)) > F (X (t)) | X (t) = xi]

=
n
∑

j=1
j 6=i

ind (F (xj) > F (xi)) Pij. (5.11)
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This conditional probability increases asN increases. However, the unconditional probability of

increasing fitness with every time step,

Pr [F (X (t + 1)) > F (X (t))]

=
n
∑

i=1

n
∑

j=1
j 6=i

ind (F (xj) > F (xi)) Pijπi, (5.12)

approaches zero in the limit asN approaches infinity. That is, the unconditional probability de-

creases asN increases. This (perhaps counter-intuitive) result is dueto the elitist nature of the

resultant selection process — the cell with maximal fitness has a stationary probability of 1, and

consequently, the probability of improving fitness is correspondingly 0.

Next, the effect of changes in cell fitness on elements of the matrix of transition probabilities,

P, is given by the following four equations:

∀j 6= i,
∂Pij

∂F (xj)
=

N

F (xj)







1

1 +
(

F (xj)

F (xi)

)N





Pij, (5.13)

∂Pii

∂F (xj)
=

−N

F (xj)

n
∑

j=1
j 6=i

1

1 +
(

F (xj)

F (xi)

)N
Pij, (5.14)

∀j 6= i,
∂Pij

∂F (xi)
=

−N

F (xi)







1

1 +
(

F (xj)

F (xi)

)N





Pij, (5.15)

∂Pii

∂F (xi)
=

N

F (xi)

n
∑

j=1
j 6=i

1

1 +
(

F (xj)

F (xi)

)N
Pij. (5.16)

In the first equation above, we see that an increase in the fitness of cellxj increases the probability

of transitioning to that cell from current cellxi by an amount that is proportional to the level of

selectivity and inversely proportional to the fitness value. The second equation indicates a corre-

sponding decrease in the probability of transitioning backto the current cell under the same altered

fitness landscape. Unlike gradient ascent optimization where the transition to another cell would

be directly proportional to the fitness value, what we have here is reminiscent of the retardation
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property in [15]; the stochastic process “slows down” transitions in more favorable fitness condi-

tions to take advantage of the external environment. Similar effects on the transition probabilities

are suggested by the latter two equations for changes in current cell fitness.

5.2 Dynamic Properties of Selective Evolutionary Generation

Systems

We can now state some intriguing dynamic properties of selective evolutionary generation systems,

under certain technical conditions.

Theorem 9. For the ergodic SEGSΓ = (X,R, P,G, F ), assume that the matrix of generation

probabilities,γ, is symmetric. Then the Markov chain representing the stochastic dynamics of

the ergodic SEGS behaves rationally with fitnessF and levelN . That is, the row vectorπ =
[

π1 π2 . . . πn

]

, whereπi satisfies(4.2), is a left eigenvector ofP, the matrix of transition

probabilities forΓ, with corresponding eigenvalue 1 (i.e.,πP = π). Hence,π is the vector of

stationary probabilities for the SEGS.

Proof. See Appendix.

As a result of Theorem 5, the stochastic dynamics of the ergodic SEGS with symmetric matrix

of generation probabilities,γ, are resilient and opportunistic. Hence, a SEGS is a computationally

inexpensive on-line technique to achieve these characteristics because only local decisions between

two candidate optimizers are made at any time. The need to evaluate the fitness of all elements in

the domain of the objective function (1.1), or even in a sub-population of candidate optimizers (as

in genetic algorithms or evolutionary strategies), is avoided.

The symmetry condition on the matrix of generation probabilities,γ, implies that there exists

an equiprobable forward and reverse transition between anypair of cells prior to the selection

process. More specifically, symmetry ofγ is a requirement that mutations be reversible. This
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reversibility requirement is satisfied in biology, and suchmutations are calledtrue back mutations

[43,44].

Theorem 10. For the ergodic SEGSΓ = (X,R, P,G, F ), assume that the matrix of generation

probabilities,γ, is symmetric. Then the Markov chain representing the stochastic dynamics of the

ergodic SEGS is time-reversible, i.e.,

πiPij = πjPji, ∀i, j. (5.17)

Proof. See Appendix.

As a consequence, the Markov chain representing the stochastic dynamics of the SEGS and its

time reversed form are statistically the same.

Theorem 11. For the ergodic SEGSΓ = (X,R, P,G, F ), assume that the matrix of generation

probabilities,γ, is symmetric. Consider the discrete-time dynamic system described by

p(t + 1) = p(t)P, (5.18)

whereP is the matrix of transition probabilities forΓ, andp(t) is ann-dimensional row vector at

timet.

(1) This discrete-time dynamic system has an invariant manifold. The manifold is the set of vectors

p with componentspi(t) > 0, 1 ≤ i ≤ n, and
n
∑

i=1
pi(t) = 1.

(2) The manifold has an equilibrium for these dynamics,π, with componentsπi satisfying(4.2).

(3) The function

V (p(t)) = −
n
∑

i=1

ϕi ln

(

pi(t)

ϕi

)

, (5.19)

whereϕi satisfies(4.6), is a Lyapunov function that establishes global asymptoticstability of

the dynamic system(5.18)with respect to the manifold.
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Proof. See Appendix.

Another important quantity of an ergodic SEGS is the expected amount of time to reach the

fittest cell, given a starting cell. We will make use of the following related definitions, which are

common to the theory of Markov chains [20].

Definition 11. Thereturn timeTj to cellxj is

Tj = inf{t ≥ 1 | X (t) = xj}, (5.20)

whereTj = ∞ if X (t) 6= xj for all t ≥ 1.

Thehitting timeof xj is taken to be

Sj =



















Tj, if X (0) 6= xj,

0, if X (0) = xj.

(5.21)

Themean hitting timeto xj given an initial cellxi is defined as

σij = E [Sj | X (0) = xi] =























n
∑

k=1
Pik (σkj + 1) , ∀i 6= j,

0, i = j,

(5.22)

and we takeσj =
[

σ1j σ2j . . . σnj

]T

.

If we let 1 =
[

1 1 . . . 1

]T

andDj be a diagonal matrix with ones on the diagonal except

one zero at position(j, j), then

σj = Dj(Pσj + 1). (5.23)

Alternatively,

σj = (I − DjP)−1Dj1, (5.24)

whereI is then × n identity matrix.
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Theorem 12. For the ergodic SEGSΓ = (X,R, P,G, F ), assume that there exists a unique index

I such thatF (xi) is maximized fori = I. Then for alli 6= I,

1. lim
N→∞

σiI exists, and

2. σiI is a strictly decreasing function ofN .

Proof. See Appendix.

Hence, a trade-off exists between resilient and opportunistic behavior of the SEGS, and the

expected hitting time of the optimizer, with the trade-off controlled by the level of selectivity,N .

That is, increasingN reduces the mean hitting time to the fittest cell but also decreases resiliency

and opportunism.
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Chapter 6

Illustrative Example of a Selective

Evolutionary Generation System

We illustrate the theory in this paper with an example in two parts.

6.1 Non-symmetric Matrix of Generation Probabilities

Consider the evolutionary generation system(X,R, P,G), where

• X = {x1, x2},

• R = {r1, r2},

• P (r1) = p, P (r2) = 1 − p, p 6= 0,

• G(x1, r1) = x2, G(x1, r2) = x1, G(x2, r1) = x2, andG(x2, r2) = x1 (see Fig. 6.1).

r1

r2

r2 r1x1 x2

Figure 6.1: The directed graph of the example in Chapter 6.1.
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The matrix of generation probabilities for this evolutionary generation system is

γ =









1 − γ12 γ12

γ21 1 − γ21









=









1 − p p

1 − p p









. (6.1)

Let F (x1) = f1 andF (x2) = f2. Let N be a finite level of selectivity. Utilizing (5.7), the

matrix of transition probabilities for the selective evolutionary generation system is

P =
1

fN
1 + fN

2









fN
1 + (1 − γ12)f

N
2 γ12f

N
2

γ21f
N
1 (1 − γ21)f

N
1 + fN

2









. (6.2)

This SEGS is both aperiodic and positive recurrent, and hence, ergodic.

The stationary distribution of the SEGS can be computed to be

π =
1

γ21fN
1 + γ12fN

2

[

γ21f
N
1 γ12f

N
2

]

. (6.3)

Note that the ratio of the stationary probabilities of the two cells is

π1

π2

=
γ21f

N
1

γ12fN
2

=
(1 − p)fN

1

pfN
2

. (6.4)

Since this ratio is not equal to
(

f1

f2

)N

, (6.5)

the SEGS does not behave rationally except forp = 0.5. Moreover, note that forp = 0.5, the matrix

of generation probabilities (6.1) is symmetric. Hence, this example illustrates that asymmetry of

the matrix of generation probabilities may lead to behaviorthat is not rational. As a result, it

is possible that, for smallN , the most fit cell is not the most probable cell at steady-state. For

instance, takep = 0.1, N = 1, f1 = 1 andf2 = 2. We obtain

π1 =
0.9

0.9 + 0.2
≈ 0.818, (6.6)

33



and

π2 =
0.2

0.9 + 0.2
≈ 0.182. (6.7)

This is why rationality is desired for optimization.

6.2 Symmetric Matrix of Generation Probabilities

Consider the evolutionary generation system(X,R, P,G), where

• X = {x1, x2},

• R = {r1, r2},

• P (r1) = p, P (r2) = 1 − p, p 6= 0,

• G(x1, r1) = x2, G(x1, r2) = x1, G(x2, r1) = x1, andG(x2, r2) = x2 (see Fig. 6.2).

r1

r1

r2 r2x1 x2

Figure 6.2: The directed graph of the example in Chapter 6.2.

The matrix of generation probabilities for this evolutionary generation system is

γ =









1 − γ12 γ12

γ21 1 − γ21









=









1 − p p

p 1 − p









. (6.8)

Let F (x1) = f1 andF (x2) = f2. Let N be a finite level of selectivity. Utilizing (5.7), the

matrix of transition probabilities for the selective evolutionary generation system is

P =
1

fN
1 + fN

2









fN
1 + (1 − γ12)f

N
2 γ12f

N
2

γ21f
N
1 (1 − γ21)f

N
1 + fN

2









. (6.9)

34



This SEGS is both aperiodic and positive recurrent, and hence, ergodic.

The stationary distribution of the SEGS can be computed to be

π =
1

γ21fN
1 + γ12fN

2

[

γ21f
N
1 γ12f

N
2

]

. (6.10)

The example has been constructed such thatγ12 = γ21 = p, and so this ergodic SEGS is rational.

Taking partial derivatives, the extrinsic and intrinsic resiliency equations of the two cells of the

SEGS are

ρ11 =
Nγ21f

N−1
1

γ21fN
1 + γ12fN

2

(

1 −
γ21f

N
1

γ21fN
1 + γ12fN

2

)

, (6.11)

=
Nπ1 (1 − π1)

f1

6= 0, (6.12)

ρ12 =
−γ21f

N
1

(γ21fN
1 + γ12fN

2 )
2Nγ12f

N−1
2 , (6.13)

=
−Nπ1π2

f2

6= 0, (6.14)

ρ21 =
−γ12f

N
2

(γ21fN
1 + γ12fN

2 )
2Nγ21f

N−1
1 , (6.15)

=
−Nπ2π1

f1

6= 0, (6.16)

ρ22 =
Nγ12f

N−1
2

γ21fN
1 + γ12fN

2

(

1 −
γ12f

N
2

γ21fN
1 + γ12fN

2

)

, (6.17)

=
Nπ2 (1 − π2)

f2

6= 0. (6.18)

These equations match the theoretical results stated previously. If γ were not symmetric, this

SEGS still happens to be resilient.

If f1 > f2, the mean hitting time tox1 is

σ1 =









0

fN
1 +fN

2

γ21fN
1









, (6.19)
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and iff2 > f1, the mean hitting time tox2 is

σ2 =









fN
1 +fN

2

γ12fN
2

0









. (6.20)

In the limit asN approaches infinity, we have

lim
N→∞

σ1 =









0

1
γ21









, (6.21)

and

lim
N→∞

σ2 =









1
γ12

0









, (6.22)

as expected from the proof of Theorem 12.
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Chapter 7

Evolution of Flapping Wing Gaits

One possible application of selective evolutionary generation systems is the on-line selection of

flapping wing gaits during flight. This application requiresresilient and opportunistic optimization

because mission phase transitions may change the fitness of the current flapping gait. For instance,

a micro air vehicle may scout a target by favoring a hovering form of flapping flight, engage

the target after increasing the fitness of descending flapping gaits, and then quickly escape after

deeming ascending gaits to be the most fit. Wind fluctuations within each mission phase are another

example of possible fitness perturbations.

Current optimization of low Reynolds number flapping gaits requires multiple iterations of

computationally expensive three dimensional flow simulations, on multiple nodes taking days, or

even weeks, to complete [45]. Moreover, these simulations depend on flow model physics that is

not well understood. Thus, there is a need for a computationally inexpensive, model-independent,

resilient, opportunistic, global, and on-line selection technique for flapping wing flight.

There are examples of flapping gait evolution in the literature [46–49]. The results presented

in these works are either complicated by hardware-specific interactions or derived from aerody-

namic and hardware models with inaccurate assumptions (e.g., steady fluid flow) for simplicity.

The tolerance to fitness function perturbations is also not examined. Our contributions in this

area are unique because we achieve resilient and opportunistic flapping gaits without significant
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computation.

7.1 Surrogate Model

The following example applies the theory developed in this paper to a validated model that approx-

imates the real-world physics of flapping flight. The model outputs a scalar for every acceptable

input vector, and this scalar output makes it easy to discussand verify claims of resiliency and

opportunism for a realistic application.

The surrogate model for hovering flight [50] predicts a lift coefficient,CL, for a prescribed

flapping motion with various input kinematic parameters. This flapping motion is described by

h(t) = ha(t) sin(ωt), (7.1)

α(t) = 90 − αa(t) sin (ωt + φα (t)) , (7.2)

whereha(t) ∈ [1, 2] andαa(t) ∈ [45, 80] are the piecewise-constant amplitudes of flapping stroke

height and pitch respectively,ω is a frequency that depends onha and a constant Reynolds number

of 100, andφα(t) ∈ [60, 120] is the piecewise-constant phase shift angle for flapping pitch. The

flapping motion described in (7.1)–(7.2) leads to the computation of a lift coefficient,CL, through

the surrogate model. Hence, the hovering flapping flight problem: given a time history of the target

lift coefficient,CLdes
(t), determine suitable time-varying flapping wing kinematic parameters that

meet the target.

We utilize the following evolutionary generation system,(X,R, P,G).

• The set of cells,X, is the set of ordered triples(ha (t) , αa (t) , φα (t)), where

ha (t) ∈ {1, 1.1, 1.2, . . . , 1.9, 2}, (7.3)

αa (t) ∈ {45, 46, 47, . . . , 79, 80}, (7.4)

φα (t) ∈ {60, 61, 62, . . . , 119, 120}. (7.5)
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• The set of resources,R, is the set{r1, r2, r3, r4, r5, r6}, with ri = ei, 1 ≤ i ≤ 6 (whereei

are the standard basis vectors forR
6).

• The probability mass function onR, P , is the discrete uniform distribution.

• The generation function,G, applied toX as

G ((ha (t) , αa (t) , φα (t)) , ri) , 1 ≤ i ≤ 6, (7.6)

is the triple given by
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,

if 1 < ha (t) < 2, 45 < αa (t) < 80,

60 < φα (t) < 120,

(ha (t) , αa (t) , φα (t)) , otherwise.

(7.7)

Since the objective is forCL(t) to trackCLdes
(t), we use the fitness function

F (ha (t) , αa (t) , φα (t)) =

exp
(

− (Kf (CLdes
(t) − CL(t)))2

)

, (7.8)

where

Kf = 10, (7.9)
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and

CL(t) = CL (ha (t) , αa (t) , φα (t)) (7.10)

is the output of the surrogate model. Note that the fitness function in (7.8) has the following

properties.

• Akin to a membership function, the fitness function is normalized so that a fitness between

0 and 1 is achieved depending on how well the model output matches the desired output. A

fitness of 1 represents a perfect output match, whereas a fitness of 0 signifies a poor match.

• The fitness function utilizes a gain parameter,Kf , which indicates how dissimilar the de-

sired output and a high-fitness true output are tolerated to be. Larger gains indicate that the

SEGS is more permissive of poor matches. The gain parameter is also related to the level

of selectivity,N , because the latter is always used as an exponent of fitness. Hence, in the

above fitness function,Kf plays a similar role toN .

• Corresponding to the above, it can be shown that the fitness function is proportional to a

Gaussian probability density function with mean equal to the desired output, variance equal

to 1
2K2

f

, and a constant of proportionality equal to
√

2π
K2

f

.

7.2 Surrogate Model Results

A sample run of the evolution scheme whenN = 5 is depicted in Figs. 7.1 to 7.4. A cell triple that

achieves satisfactory performance is found within 1000 generations, and the scheme is resilient

because it quickly finds a new triple that achieves an acceptable output when the target lift coef-

ficient, and hence the fitness function, changes. In Figs. 7.1to 7.3, the red vertical dashed lines

indicate a generation for which the evolved flapping forwardand backward motion is illustrated in

Fig. 7.4.

For generations 1, 900, 1025, and 2000, the plots in Fig. 7.4 each display 10 snapshots of a

15% elliptical airfoil through a flapping half-stroke. The solid circle represents the leading edge
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of the airfoil, which moves in an aircraft body-fixed reference frame with neutral position at (0,0).

The arrows on the forward half-stroke plots indicate that the airfoil travels from the most rearward

position to the most forward position, whereas the oppositeis true for a backward half-stroke.

Although the periods of the strokes vary at different generations because of the constant Reynolds

number, the snapshots are taken at the same fractional period interval. Therefore, a stroke with

more spacing between snapshots has a faster motion than a stroke with snapshots that are closely

spaced.

Typically, the scheme averages 1 minute 18 seconds to compute the output of 1000 generations

while running in MATLAB on a 2.50 GHz dual-core processor laptop with 4.00 GB of RAM and

the Windows Vista operating system.
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Figure 7.1: Target (dashed black) and actual (solid blue) lift coefficients per generation.
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Figure 7.2: Fitness value per generation.
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Figure 7.3: Flapping wing kinematic parameters per generation.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5

X

Y

(a) Gen. 1: Forward Half-
Stroke

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5

X

Y

(b) Gen. 1: Back Half-Stroke

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5

X

Y

(c) Gen. 900: Forward Half-
Stroke

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5

X

Y

(d) Gen. 900: Back Half-
Stroke

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5

X

Y

(e) Gen. 1025: Forward Half-
Stroke

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5

X

Y

(f) Gen. 1025: Back Half-
Stroke

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5

X

Y

(g) Gen. 2000: Forward Half-
Stroke

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5

X

Y

(h) Gen. 2000: Back Half-
Stroke

Figure 7.4: Snapshots of the forward and back half-strokes of the flapping wing sampled at the 1st,
900th, 1025th, and 2000th generations.

7.3 Theodorsen-Garrick Model

This example utilizes the developed theory and a model embodied by unsteady flow equations to

consider the standard reference-tracking problem in control systems within the context of flapping

flight. The work here is different from [51–57] in that we evolve flapping wing parameters for tra-

jectory tracking, instead of taking a control-theoretic approach. The chosen model outputs forces

from which trajectories can be computed, and these trajectories are then analyzed by a SEGS. This

approach, and the other differences from the previous example (forward motion of the flapping
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wing, incorporation of actual physics, and an addition to the literature), are a legitimate reason to

include the application here.

The Theodorsen-Garrick model [58,59] predicts the lift andthrust forces on a flat plate under-

going a prescribed flapping motion with various input kinematic parameters. This flapping motion

is described by

h(t) = ha(t) sin (ω (t) t + φh (t)) , (7.11)

α(t) = αa(t) sin (ω (t) t + φα (t)) , (7.12)

whereha(t) ∈ (0, 1] andαa(t) ∈ [−0.5, 0.5] are the piecewise-constant amplitudes of flapping

stroke height and angle of attack respectively,ω(t) ∈ (0, 1] is a piecewise-constant frequency,

andφh(t) ∈ [−0.5, 0.5] andφα(t) ∈ [−0.5, 0.5] are the piecewise-constant phase shift angles for

flapping stroke height and angle of attack, respectively. The flapping motion described in (7.11)–

(7.12) leads to the computation of lift and thrust forces through the equations stated in [59]. These

forces determine the trajectory followed by the flapping wing; hence, the flapping flight motion

problem: given a target trajectory (e.g., a constant altitude forward motion trajectory), find suitable

flapping wing kinematic parameters that meet the target.

We utilize the following evolutionary generation system,(X,R, P,G).

• The set of cells,X, is the set of ordered pentuples(ha (t) , ω (t) , φh (t) , αa (t) , φα (t)),

where

ha (t) ∈ {0.1, 0.2, 0.3, . . . , 0.9, 1}, (7.13)

ω (t) ∈ {0.05, 0.1, 0.15, . . . , 0.95, 1}, (7.14)

φh (t) ∈ {−0.5,−0.45,−0.4, . . . , 0.45, 0.5}, (7.15)

αa (t) ∈ {−0.5,−0.45,−0.4, . . . , 0.45, 0.5}, (7.16)

φα (t) ∈ {−0.5,−0.45,−0.4, . . . , 0.45, 0.5}. (7.17)

43



• The set of resources,R, is the set{r1, r2, r3, r4, r5, r6, r7, r8, r9, r10}, with ri = ei, 1 ≤ i ≤

10 (whereei are the standard basis vectors forR
10).

• The probability mass function onR, P , is the discrete uniform distribution.

• The generation function,G, applied toX as

G ((ha (t) , ω (t) , φh (t) , αa (t) , φα (t)) , ri) ,

1 ≤ i ≤ 10, (7.18)
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is the pentuple given by
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if 0.1 < ha (t) < 1, 0.05 < ω (t) < 1,

− 0.5 < φh (t) < 0.5, −0.5 < αa (t) < 0.5,

− 0.5 < φα (t) < 0.5,

(ha (t) , ω (t) , φh (t) , αa (t) , φα (t)) , otherwise.

(7.19)

The flapping wing parameters evolved by the SEGS are inputs for the Theodorsen-Garrick

model, which outputs liftL(τ) and time-averaged-thrustT (τ) over timeτ . These forces are in
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turn inputs for the following double-integrator, unit-mass wing trajectory dynamics,
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, (7.20)

where(x (τ) , y (τ)) is the trajectory of the center of mass of the flapping wing. This trajectory is

sampledν times, yielding(x (k) , y (k)), 1 ≤ k ≤ ν. For eachx(k), the targetydes(k) is computed.

Let

AvgDistance(t) =

ν
∑

k=1
|ydes(k) − y(k)|

ν
(7.21)

be the mean difference between the target and current trajectories. Since the objective is to track

the target, we use the following fitness function for the SEGS,

F (ha (t) , ω (t) , φh (t) , αa (t) , φα (t)) =

exp
(

− (0.1AvgDistance(t))2
)

. (7.22)

7.4 Theodorsen-Garrick Model Results

A sample initial trajectory together with a trajectory obtained from that sample after 200 gen-

erations withN = 5 are plotted in Fig. 7.5, where the trajectories are depictedover the same

period of time. The figure shows that the evolved kinematic parameters reduce altitude excursions

away from the target trajectory by a factor of four while utilizing roughly the same amount of

time-averaged-thrust that was specified by the initial set of kinematic parameters. Moreover, the

average evolved trajectory tracks the constant altitude desired trajectory, while the average initial

trajectory does not.

The scheme requires, on average, 2 minutes 34 seconds to compute the output of 200 genera-
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tions while running in MATLAB on a 2.50 GHz dual-core processor laptop with 4.00 GB of RAM

and the Windows Vista operating system.

0 20 40 60 80 100
−5

0

5

10

15

20

25

X Position

Y
 P

os
iti

on

 

 

Initial Trajectory
Evolved Trajectory
Reference Trajectory

Figure 7.5: Target trajectory (dashed black), initial trajectory (solid blue) and the 200th evolved
(dashed-dotted red) trajectory.
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Chapter 8

Conclusions and Future Work

This paper has proposed a novel on-line global optimizationstrategy by demonstrating and utilizing

the fact that the desirable characteristics of resiliency and opportunism are guaranteed by rational

behavior. The ratio of the stationary probability of the optimizer of a fitness function to any other

element’s stationary probability is given by

πI

πj

=

(

F (xI)

F (xj)

)N

, 1 ≤ j ≤ n, (8.1)

whereF (xI) > F (xi) for all i implies that cellxI is the most likely. In the limit asN approaches

infinity, πI approaches 1, and standard optimization is recovered. The canonical genetic algorithm

with fitness proportional selection and the (1+1)-ES strategy are particular cases of the proposed

scheme.

Although rational behavior suggests optimization decisions that are based on global knowl-

edge, this paper proves that rationality may be achieved through a sequence of local decisions,

X (t + 1) = Select(X (t), G(X (t),R(t)), N), (8.2)

that require limited knowledge of the objective function. Thus, each step of the proposed scheme

is also computationally inexpensive.
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Resiliency and opportunism are achieved at the expense of themean hitting time to the opti-

mizer, and the trade-off is managed through the level of selectivity N . The resiliency of a SEGS is

a conserved quantity, and any improvements to the resiliency of a particular element decreases the

resiliency of other elements.

We have utilized our technique to successfully develop resilient hovering and forward-motion

flapping wing gaits without expending significant computation effort.

The work here may be extended to the case of multi-objective (Pareto) optimization through a

suitable definition of the fitness function. Future work includes understanding the origins of the

Lyapunov function that characterizes a SEGS, investigating the implications of time-reversibility,

and exploring parallel computing implementations of this work. We will also seek a conservation

law for resiliency and mean hitting time.
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Appendix A

Proofs

Theorem 1.

Proof. To show that (4.2) implies Markov chain rational behavior, consider the ratio of anyπi to

πj, i 6= j, where each satisfies (4.2). Equation (4.1) follows immediately.

To show that Markov chain rational behavior implies (4.2), we begin with

n
∑

k=1

πk = 1.

Dividing both sides of the equation byπi, we obtain

n
∑

k=1

πk

πi

=
1

πi

, 1 ≤ i ≤ n,

which, using (4.1), yields
n
∑

k=1

(

F (xk)

F (xi)

)N

=
1

πi

, 1 ≤ i ≤ n.

Multiplying by F (xi)
N and solving forπi yields (4.2), which completes the proof.

Theorem 2.

Proof. We use the method of Karush-Kuhn-Tucker (KKT) multipliers to solve the optimization
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problem

min
π1,...,πn

Φ(π) = −
n
∑

i=1

F (xi)
N ln(πi),

subject to
n
∑

i=1

πi − 1 = 0,

−πi < 0, 1 ≤ i ≤ n.

Let L(π1, . . . , πn, λ, µ1, . . . , µn) =

−
n
∑

i=1

F (xi)
N ln(πi) + λ

(

n
∑

i=1

πi − 1

)

−
n
∑

i=1

µiπi.

The KKT necessary conditions for optimality are

−F (xi)
N

πi

+ λ − µi = 0, 1 ≤ i ≤ n,

n
∑

i=1

πi − 1 = 0,

−πi < 0, 1 ≤ i ≤ n,

λ ≥ 0,

µi ≥ 0, 1 ≤ i ≤ n,

λ

(

n
∑

i=1

πi − 1

)

= 0,

µiπi = 0, 1 ≤ i ≤ n.

The first necessary condition becomes

−F (xi)
N + λπi − µiπi = 0, 1 ≤ i ≤ n.
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Sinceµiπi = 0 for all i, we obtain

−F (xi)
N + λπi = 0, 1 ≤ i ≤ n.

Next, the constraintπi > 0 for all i and the positive nature ofF (xi)
N imply thatλ 6= 0. Therefore,

πi =
F (xi)

N

λ
, 1 ≤ i ≤ n.

n
∑

i=1

πi =
n
∑

i=1

F (xi)
N

λ
, 1 ≤ i ≤ n.

Since
n
∑

i=1
πi = 1, we find that

λ =
n
∑

i=1

F (xi)
N ,

and hence,

πi =
F (xi)

N

n
∑

k=1
F (xk)

N
, 1 ≤ i ≤ n.

Thus, the stationary distribution in (4.2) satisfies the first order necessary conditions for optimality.

Moreover, we have
∂2Φ(π)

∂πj∂πi

= 0 for j 6= i,

∂2Φ(π)

∂π2
i

=
F (xi)

N

π2
i

> 0.

Hence, the optimization problem has a strictly convex cost function and linear constraints. Thus,

the solution of the first order necessary conditions is the global optimizer, which completes the

proof.

Theorem 3.

Proof. Similar to Theorem 2, we can use the method of Karush-Kuhn-Tucker (KKT) multipliers
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to solve the following optimization problem for arbitraryϕ ∈ Dn:

min
π∈Dn

−
n
∑

i=1

ϕi ln(πi),

which is equivalent to

min
π1,...,πn

Φ(π) = −
n
∑

i=1

ϕi ln(πi),

subject to
n
∑

i=1

πi − 1 = 0,

−πi < 0, 1 ≤ i ≤ n.

This is a scaled version of Theorem 2, and therefore the remainder of the proof is omitted.

Theorem 4.

Proof. We prove both parts of this theorem directly. Consider that

ρij

∣

∣

∣

∣

N=0
=

−Nπiπj

F (xj)

∣

∣

∣

∣

∣

N=0

,

=
−N

F (xj)

F (xi)
N

n
∑

k=1
F (xk)

N

F (xj)
N

n
∑

k=1
F (xk)

N

∣

∣

∣

∣

∣

∣

∣

∣

N=0

.

By substitution,ρij

∣

∣

∣

∣

N=0
is 0. Similarly,

ρii

∣

∣

∣

∣

N=0
=

Nπi (1 − πi)

F (xi)

∣

∣

∣

∣

∣

N=0

,

=
N

F (xi)

F (xi)
N

n
∑

k=1
F (xk)

N









1 −
F (xi)

N

n
∑

k=1
F (xk)

N









∣

∣

∣

∣

∣

∣

∣

∣

N=0

.

By substitution,ρii

∣

∣

∣

∣

N=0
is also 0.

For the second part of the theorem, we need the following lemma that can be easily proven
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using L’Hôpital’s rule.

Lemma 2. Let0 < α < 1. Then lim
N→∞

NαN = 0.

Let I be the index for whichF (xi) is maximized, and assume thatI is unique. Then,

lim
N→∞

F (xj)
N

F (xI)
N

= 0, ∀j 6= I, and

lim
N→∞

n
∑

k=1

F (xk)
N

F (xI)
N

= 1.

Consider that

lim
N→∞

ρij = lim
N→0

−Nπiπj

F (xj)
,

= lim
N→∞

−N

F (xj)

F (xi)
N

n
∑

k=1
F (xk)

N

F (xj)
N

n
∑

k=1
F (xk)

N
,

= lim
N→∞

−N

F (xj)

F (xi)
N

F (xI)N

n
∑

k=1

F (xk)N

F (xI)N

F (xj)
N

F (xI)N

n
∑

k=1

F (xk)N

F (xI)N

.

Now for all i 6= j, wherei 6= I andj 6= I, the application of Lemma 2 withα = F (xi)
F (xI)

implies

that lim
N→∞

ρij = 0.

If i = I 6= j, then the application of Lemma 2 withα = F (xj)

F (xI)
implies that lim

N→∞
ρij = 0.

Lastly, if i 6= j = I, then the application of Lemma 2 withα = F (xi)
F (xI)

implies that lim
N→∞

ρij = 0.

Thus, for alli andj, lim
N→∞

ρij = 0.

Similarly,

lim
N→∞

ρii = lim
N→0

Nπi (1 − πi)

F (xi)
,

= lim
N→∞

N

F (xi)

F (xi)
N

n
∑

k=1
F (xk)

N









1 −
F (xi)

N

n
∑

k=1
F (xk)

N









,
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= lim
N→∞

N

F (xi)

F (xi)
N

F (xI)N

n
∑

k=1

F (xk)N

F (xI)N

n
∑

k=1
k 6=i

F (xk)N

F (xI)N

n
∑

k=1

F (xk)N

F (xI)N

.

If i 6= I, then the application of Lemma 2 withα = F (xi)
F (xI)

implies that lim
N→∞

ρii = 0.

If i = I, then we have

lim
N→∞

ρii = lim
N→∞

N

F (xI)

F (xI)N

F (xI)N

n
∑

k=1

F (xk)N

F (xI)N

n
∑

k=1
k 6=I

F (xk)N

F (xI)N

n
∑

k=1

F (xk)N

F (xI)N

.

The application of Lemma 2 withα = F (xk)
F (xI)

a total ofn − 1 times implies thatlim
N→∞

ρii = 0.

Thus, for alli, lim
N→∞

ρii = 0. This completes the proof.

Theorem 5.

Proof. To show that rational behavior implies that the time-homogeneous, irreducible, ergodic

Markov chain(X,P) is resilient and opportunistic, consider (4.16) and (4.17), which hold because

the stationary distributionπ has the closed form expression (4.2). By Definition 5,πi > 0 ∀i since

the Markov chain is ergodic,N > 0 since the Markov chain is selective, andF (xi) > 0 ∀i since

the fitness function is positive. Hence,ρij 6= 0 ∀i andj, and(X,P) is resilient and opportunistic.

This completes the proof.

Theorem 6.

Proof. To show that ergodicity is a necessary condition for the time-homogeneous, irreducible, er-

godic Markov chain(X,P) to be resilient and opportunistic, suppose that the chain isnot ergodic.

Then the chain is either not positive recurrent (i.e., it is null recurrent or transient) or it is periodic.

If the chain is not positive recurrent, then there exists a state,xi, with zero stationary probability.

Suppose now that the fitness function is perturbed such that the fitness of this state,F (xi), becomes

the optimal fitness value. Since the stationary probabilityof xi is zero, statexi is never visited, and

therefore never considered as the optimizer. We haveρii = ∂πi/∂F (xi) = 0, and hence(X,P) is
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not resilient or opportunistic. If the chain is periodic, then the stationary probability distribution

does not exist, and resiliency and opportunism are not defined. This completes the proof.

Lemma 1.

Proof. We prove the claim directly. Using (5.3), we have

n
∑

j=1

γij =
n
∑

j=1

m
∑

k=1

δijkpk,

=
m
∑

k=1

n
∑

j=1

δijkpk,

=
m
∑

k=1

pk

n
∑

j=1

δijk.

Now,
n
∑

j=1
δijk = 1 because cellxi and resourcerk generate a unique cellG(xi, rk). Therefore,

n
∑

j=1

γij =
m
∑

k=1

pk · 1,

=
m
∑

k=1

pk = 1.

This completes the proof.

Theorem 7.

Proof. We prove the claim directly. Using (5.7), we have

n
∑

j=1

Pij =
n
∑

j=1
j 6=i

Pij + Pii,

=
n
∑

j=1
j 6=i

1

1 +
(

F (xi)
F (xj)

)N
γij + γii +

n
∑

j=1
j 6=i

1

1 +
(

F (xj)

F (xi)

)N
γij,

=
n
∑

j=1
j 6=i







1

1 +
(

F (xi)
F (xj)

)N
+

1

1 +
(

F (xj)

F (xi)

)N





 γij + γii,
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=
n
∑

j=1
j 6=i

γij + γii,

=
n
∑

j=1

γij = 1.

This completes the proof.

Theorem 8.

Proof. This is a direct proof. We begin by noting that

lim
N→∞

Pij = lim
N→∞

1

1 +
(

F (xi)
F (xj)

)N
γij,

=



















γij, if F (xi) < F (xj),

0, if F (xi) > F (xj),

and

lim
N→∞

Pii = lim
N→∞









γii +
n
∑

j=1
j 6=i

1

1 +
(

F (xj)

F (xi)

)N
γij









,

= γii +
n
∑

j=1
j 6=i

F (xi)>F (xj)

γij,

= 1 −
n
∑

j=1
j 6=i

F (xi)<F (xj)

γij.

Without loss of generality, assume that the cells of the SEGSare ordered according to decreas-

ing fitness value, so that the indexI = 1. The matrix lim
N→∞

P is therefore a lower triangular matrix.

Furthermore,lim
N→∞

P11 = 1.

Consider the row vectorv =
[

1 0 . . . 0

]

. The product of this row vector with the lower

triangular matrix lim
N→∞

P is the first row of lim
N→∞

P =
[

1 0 . . . 0

]

= v.
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Therefore, the row vectorv =
[

1 0 . . . 0

]

is a left eigenvector oflim
N→∞

P, with correspond-

ing eigenvalue1 (i.e.,v lim
N→∞

P = v). Hence, lim
N→∞

π = v, and the proof is complete.

Theorem 9.

Proof. We directly show that the row vectorπ =
[

π1 π2 . . . πn

]

, whereπi satisfies (4.2), is a

left eigenvector ofP, the matrix of transition probabilities forΓ, with corresponding eigenvalue 1.

If the matrix of generation probabilities,γ, is symmetric, then

γij = γji, 1 ≤ i, j ≤ n,

or equivalently,
m
∑

k=1

δijkpk =
m
∑

k=1

δjikpk.

Consider the row vectorv = πP. Then

vj =
n
∑

i=1

πiPij,

=
n
∑

i=1
i6=j

πiPij + πjPjj,

=
n
∑

i=1
i6=j

πiPij + πj









1 −
n
∑

i=1
i6=j

Pji









,

=
n
∑

i=1
i6=j

πiPij + πj −
n
∑

i=1
i6=j

πjPji.

From (4.2), (5.3), and (5.7),vj becomes

n
∑

i=1
i6=j









F (xi)
N

n
∑

a=1
F (xa)

N

F (xj)
N

F (xi)
N + F (xj)

N

m
∑

k=1

δijkpk









+πj
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−
n
∑

i=1
i6=j









F (xj)
N

n
∑

a=1
F (xa)

N

F (xi)
N

F (xi)
N + F (xj)

N

m
∑

k=1

δjikpk









.

This reduces toπj becauseγ is symmetric. Hence,π = πP.

Theorem 10.

Proof. We directly show thatπiPij = πjPji for all i andj. If the matrix of generation probabilities,

γ, is symmetric, then

γij = γji, 1 ≤ i, j ≤ n,

or equivalently,
m
∑

k=1

δijkpk =
m
∑

k=1

δjikpk, 1 ≤ i, j ≤ n.

ConsiderπiPij. Using (4.2), (5.3), and (5.7), we obtain

πiPij =
F (xi)

N

n
∑

a=1
F (xa)

N

F (xj)
N

F (xi)
N + F (xj)

N

m
∑

k=1

δijkpk,

=
F (xj)

N

n
∑

a=1
F (xa)

N

F (xi)
N

F (xi)
N + F (xj)

N

m
∑

k=1

δjikpk,

= πjPji, 1 ≤ i, j ≤ n,

where the second equation uses the symmetry ofγ. Hence, the Markov chain representing the

stochastic dynamics of the ergodic SEGS is time-reversible.

Theorem 11.

Proof. We use Lyapunov’s Method and the LaSalle Invariance Principle [60,61] to directly prove

this theorem.

For the ergodic SEGSΓ = (X,R, P,G, F ) with a symmetric matrix of generation probabili-
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ties,γ, consider the discrete-time dynamic system described by

p(t + 1) = p(t)P,

whereP is the matrix of transition probabilities forΓ, andp(t) is ann-dimensional row vector at

time t. Here,p(t) is the ergodic probability distribution over the states at time t, and therefore the

components ofp satisfypi(t) > 0, 1 ≤ i ≤ n, and
n
∑

i=1
pi(t) = 1. Since the SEGS is ergodic and

irreducible, a unique equilibrium stationary distribution for these dynamics exists,lim
t→∞

p(t) = π,

with componentsπi satisfying (4.2).

Let us defineq(t) = p(t) − π, so that the transformed discrete-time dynamic system,

q(t + 1) = (q(t) + π)P − π,

has an equilibrium at the origin. The function

V (p(t)) = −
n
∑

i=1

ϕi ln

(

pi(t)

ϕi

)

,

whereϕi satisfies (4.6), may be rewritten as

V (q(t) + π) = −
n
∑

i=1

ϕi ln

(

qi(t) + πi

ϕi

)

.

We first check the value of this transformed candidate Lyapunov equation at the origin of the

transformed system. We have

V (0 + π) = −
n
∑

i=1

ϕi ln

(

πi

ϕi

)

= −
n
∑

i=1

ϕi ln 1 = 0,

becauseπ = ϕ.

Next, we have to show that∀q(t) 6= 0, V (q(t) + π) > 0. But this follows directly from (the
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second equivalent restatement of) Theorem 3. This is because∀q(t) 6= 0,

V (q(t) + π) = −
n
∑

i=1

ϕi ln

(

pi(t)

ϕi

)

,

which is always positive according to the theorem.

Now consider∆V = V (q(t+1)+π)−V (q(t)+π). In the equations that follow, we assume,

without loss of generality, that the fitness value of each cell of the SEGS is greater than or equal to

one. (After all, if there exists ani such that0 < F (xi) < 1, then it is possible to find aK ∈ R
+

to scale all the fitness values upward, so that for alli, KF (xi) ≥ 1. Define the new fitnesses

F ′(xi) = KF (xi), 1 ≤ i ≤ n and observe that the Markov chain representation of the SEGSis

unchanged).

∆V = V (p(t + 1)) − V (p(t)),

= −
n
∑

j=1

ϕj ln

(

pj(t + 1)

ϕj

)

+
n
∑

j=1

ϕj ln

(

pj(t)

ϕj

)

,

= −
n
∑

j=1

ϕj ln

(

pj(t + 1)

pj(t)

)

,

= −
n
∑

j=1

ϕj ln









n
∑

i=1
pi(t)Pij

pj(t)









,

= −
n
∑

j=1

ϕj ln

(

1

pj(t)

n
∑

i=1

pi(t)F (xj)
N

F (xi)N + F (xj)N

)

,

= −
n
∑

j=1

ϕj ln

(

F (xj)
N

pj(t)

n
∑

i=1

pi(t)

F (xi)N + F (xj)N

)

.

Now because we have assumed, without loss of generality, that all fitnesses are greater than or

equal to one, we have

F (xj)
N

pj(t)

n
∑

i=1

pi(t)

F (xi)N + F (xj)N
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≥
n
∑

i=1

pi(t)

F (xi)N + F (xj)N
,

≥
n
∑

i=1

pi(t),

≥1.

Therefore, we obtain

∆V ≤ −
n
∑

j=1

ϕj ln 1, or

∆V ≤ 0.

That is,∆V is negative semi-definite, as required by Lyapunov’s method.

To apply LaSalle’s Invariance Principle, we have to findQ = {q(t)|∆V = 0}. Note that

∆V = 0,

= −
n
∑

j=1

ϕj ln 1,

= −
n
∑

j=1

ϕj ln

(

n
∑

i=1

Pji

)

,

which can be rewritten with Bayes’ Rule as

∆V = −
n
∑

j=1

ϕj ln

(

n
∑

i=1

πi

πj

Pij

)

.

We had previously shown that

∆V = −
n
∑

j=1

ϕj ln









n
∑

i=1
pi(t)Pij

pj(t)









.

62



Thus,∆V = 0 implies thatπi = pi(t), 1 ≤ i ≤ n. But from the definition ofq(t),

πi = pi(t) − qi(t),

and we must have that∆V = 0 implies thatqi(t) = 0, 1 ≤ i ≤ n. Therefore, the only solution of

the transformed discrete-time dynamic system that can stayidentically inQ is the trivial solution

q(t) ≡ 0. Hence, the origin is an asymptotically stable equilibriumfor the transformed discrete-

time dynamic system, and therefore, the function

V (p(t)) = −
n
∑

i=1

ϕi ln

(

pi(t)

ϕi

)

,

is a Lyapunov function for the original system with the set ofvectorsp with componentspi(t) >

0, 1 ≤ i ≤ n, and
n
∑

i=1
pi(t) = 1 forming an invariant manifold. Moreover, since the Lyapunov

function is radially unbounded, the equilibrium is globally asymptotically stable, as claimed.

Theorem 12.

Proof. We first prove directly thatσiI converges to a constant value for eachi asN approaches

infinity, before inductively showing that the value ofσiI does indeed decrease with increasingN .

We begin by noting that

lim
N→∞

Pij = lim
N→∞

1

1 +
(

F (xi)
F (xj)

)N
γij,

=



















γij, if F (xi) < F (xj),

0, if F (xi) > F (xj),

and

lim
N→∞

Pii = lim
N→∞









γii +
n
∑

j=1
j 6=i

1

1 +
(

F (xj)

F (xi)

)N
γij









,
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= γii +
n
∑

j=1
j 6=i

F (xi)>F (xj)

γij,

= 1 −
n
∑

j=1
j 6=i

F (xi)<F (xj)

γij.

Without loss of generality, assume that the cells of the SEGSare ordered according to de-

creasing fitness value, so that the indexI = 1. The matrix lim
N→∞

P is therefore a lower triangular

matrix.

We seek

lim
N→∞

σ1 = lim
N→∞

(I − D1P)−1D11,

= (I − D1 lim
N→∞

P)−1D11,

where(I − D1 lim
N→∞

P)−1 always exists due to the following.

(i) lim
N→∞

P is a lower triangular matrix with full rank. All of the lower triangular elements are

non-zero.

(ii) D1 is a lower triangular matrix with rankn − 1.

(iii) (D1 lim
N→∞

P) is a matrix with zeros in row one, and elements that are equal to lim
N→∞

P in all

other rows. Hence,(D1 lim
N→∞

P) has rankn − 1. Since this matrix is the product of lower

triangular matrices, it is also lower triangular.

(iv) (I − D1 lim
N→∞

P) is a lower triangular matrix because it is the difference of lower triangular

matrices. All lower triangular elements of this matrix are non-zero, with the matrix element

(I − D1 lim
N→∞

P)11 = 1. Thus,(I − D1 lim
N→∞

P) has full rank.

Since(I − D1 lim
N→∞

P) is a lower triangular matrix with full rank, the equation

(I − D1 lim
N→∞

P) lim
N→∞

σ1 = D11,
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may be solved by the iterative process of forward substitution to obtain unique constant values of

lim
N→∞

σi1 for eachi. For instance,

lim
N→∞

σ11 = 0,

lim
N→∞

σ21 =
1

γ21

,

lim
N→∞

σ31 =
1 + γ32( lim

N→∞
σ21)

γ31 + γ32

,

=
1 + γ32

γ21

γ31 + γ32

,

lim
N→∞

σ41 =
1 + γ42( lim

N→∞
σ21) + γ43( lim

N→∞
σ31)

γ41 + γ42 + γ43

,

=
1 + γ42

γ21
+ γ43

(

1+
γ32
γ21

γ31+γ32

)

γ41 + γ42 + γ43

,

and so on. This completes the convergence part of the proof.

We next use induction on the cell index to show thatσi1 is a strictly decreasing function ofN .

First, consider that

σ21 =

n
∑

k=1
k 6=2

P2k (σk1 + 1) + P22

1 − P22

.

Hence,

lim
N→∞

σ21 = lim
N→∞

1 +
n
∑

k=1
k 6=2

P2kσk1

1 − P22

,

=

lim
N→∞





1 +
n
∑

k=1
k 6=2

P2kσk1







lim
N→∞

(1 − P22)
,

=

1 + lim
N→∞







n
∑

k=1
k 6=2

P2kσk1







1 − (1 − γ21)
,
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=
1

γ21

+
1

γ21

lim
N→∞









n
∑

k=1
k 6=2

P2kσk1









.

Comparing this expression to the result that was calculated by forward substitution above,

lim
N→∞

n
∑

k=1
k 6=2

P2kσk1 must decrease to 0 asN increases. Therefore,σ21 decreases asN increases.

For the induction hypothesis, assume that for anys− 1 where2 ≤ (s− 1) ≤ (n− 1), we have

that for all t where2 ≤ t ≤ (s − 1), the mean hitting timeσt1 decreases withN . We now show

thatσs1 is a decreasing function ofN .

Consider that

σs1 =

n
∑

k=1
k 6=s

Psk (σk1 + 1) + Pss

1 − Pss

.

Hence,

lim
N→∞

σs1 = lim
N→∞

1 +
n
∑

k=1
k 6=s

Pskσk1

1 − Pss

,

=

lim
N→∞





1 +
n
∑

k=1
k 6=s

Pskσk1







lim
N→∞

(1 − Pss)
,

=

1 + lim
N→∞







n
∑

k=1
k 6=s

Pskσk1







s−1
∑

k=1
γsk

,

=

1 + lim
N→∞

(

s−1
∑

k=1
Pskσk1 +

n
∑

k=s+1
Pskσk1

)

s−1
∑

k=1
γsk

.

Comparing this expression to the general result calculated by forward substitution,

lim
N→∞

n
∑

k=s+1
Pskσk1 must decrease to 0 asN increases. By the induction hypothesis,lim

N→∞

s−1
∑

k=1
Pskσk1

decreases with increasingN . Therefore,σs1 is a decreasing function ofN .
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Hence, for alli where2 ≤ i ≤ n, an increase in the level of selectivity produces a correspond-

ing decrease in the mean hitting time to the fittest cell,σi1, with lim
N→∞

σi1 approaching a unique

constant value for eachi.
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